Soil Amendments, Compositing and FSMA: Principles and Practices

Patricia Millner Environmental Microbial and Food Safety Laboratory Beltsville Agricultural Research Center Pat.Millner@ars.usda.gov

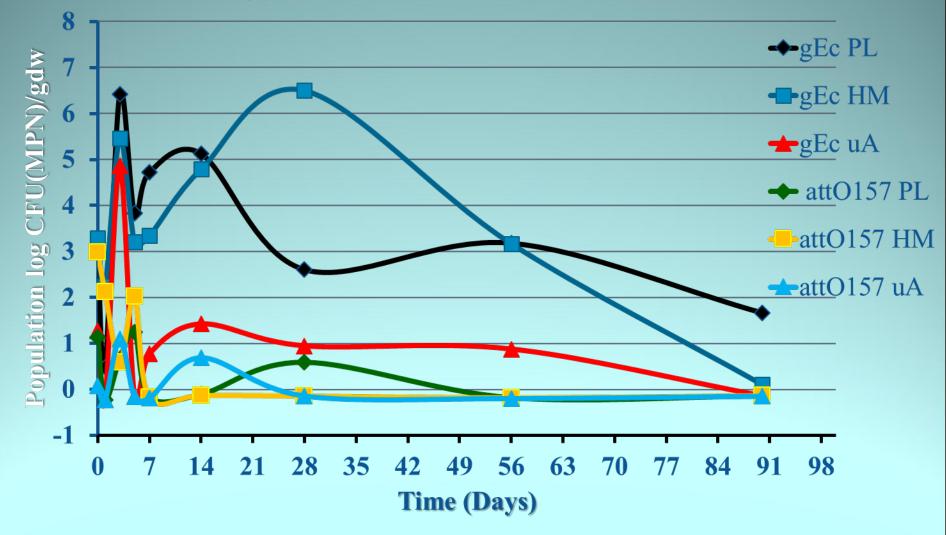
Overview

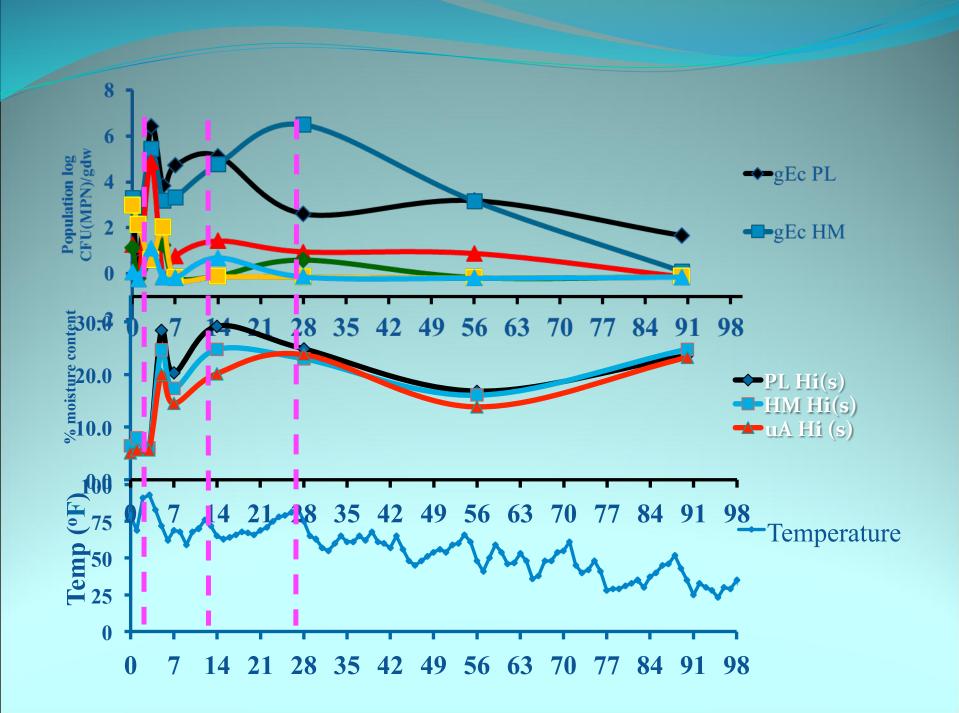
• FSMA Compliant Treatments for BSAAO: Self-Heating (Composting) & other Processes

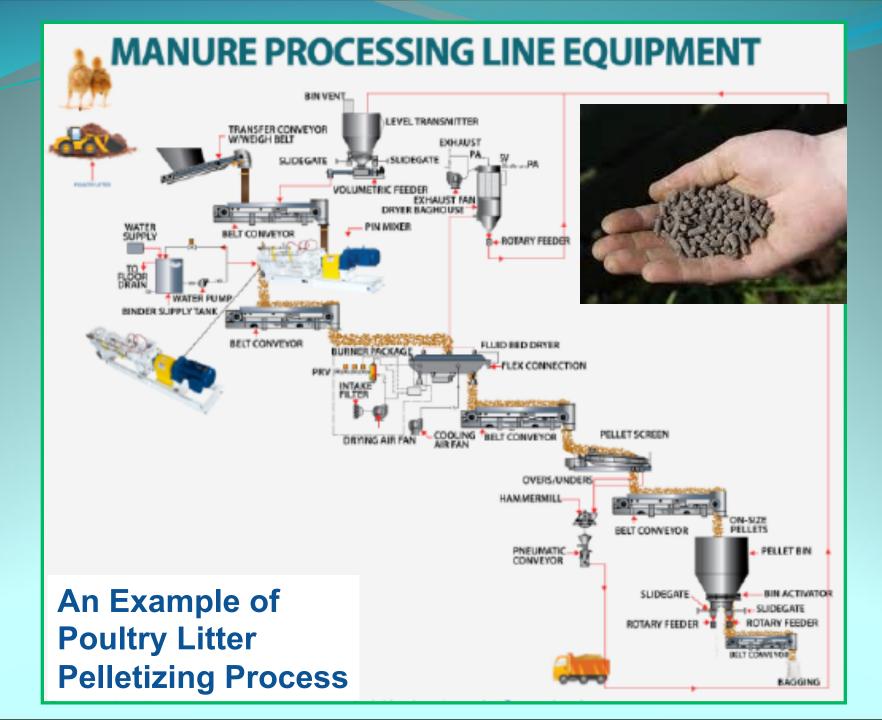
- E. coli survival in soil & transfer to crops
- Materials processing, handling, characteristics & testing

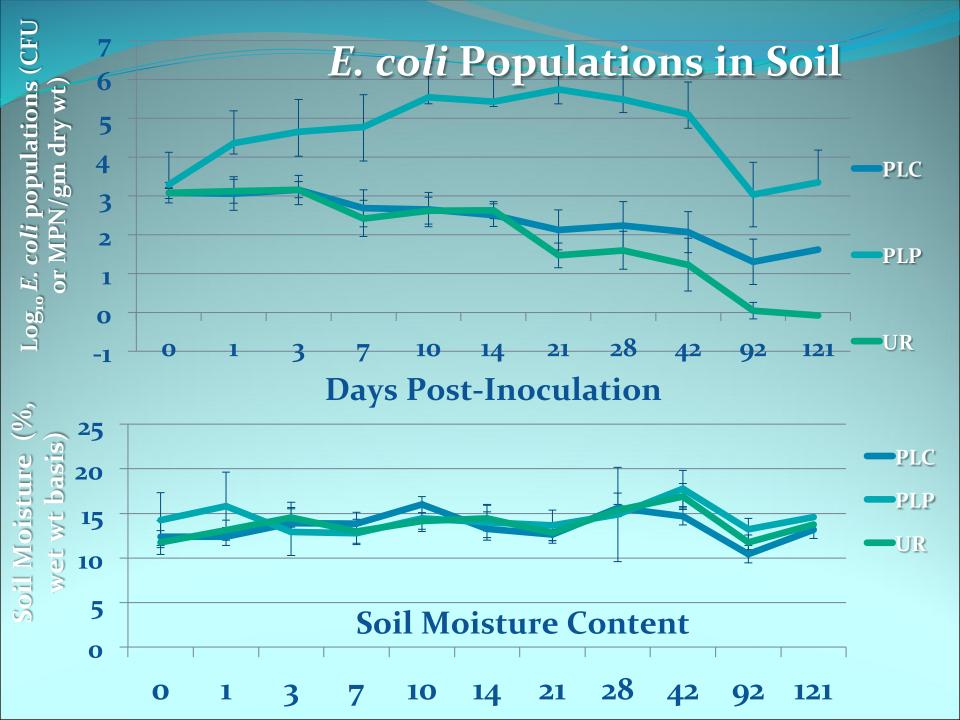
FSMA Compliant Treatments for BSAAO

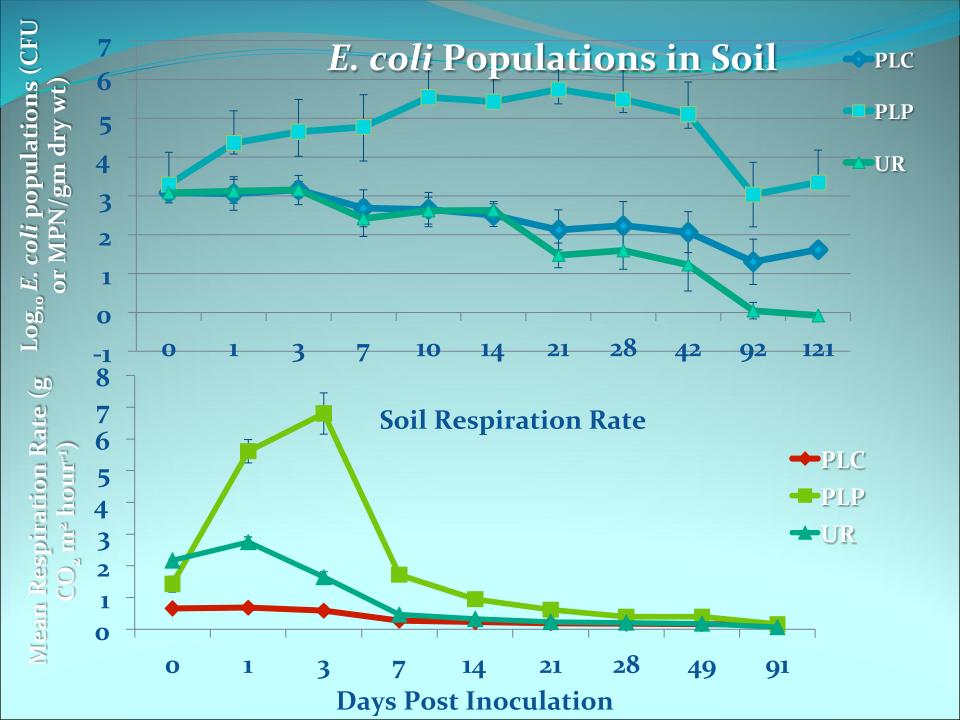
- FDA: conducting a risk assessment and research on application-to-harvest wait times for raw manure, to minimize pathogen contamination risk.
- "FDA does not object to farmers complying with the USDA's National Organic Program standards" 90/
 120 day wait time interval between raw manure application and fresh produce harvest.
 - FDA "considers adherence to the NOP standards a prudent step toward minimizing the likelihood of contamination while its risk assessment and research is ongoing."


E. coli survival in manure-amended soil


Dairy Manure (DM) Liquids Solids Horse Manure (HM) Poultry Litter (PL) Unamended (UN)




- 12 separate field trials in MD & PA
- Trials over 4 years leads to:
- 162 survival profiles for gEC over all sites
- 162 survival profiles for attO157 over all sites


High populations of gEc and attO157 from **SURFACE** samples of silty loam soil amended with PL, HM, or uA

Recovery of g*E. coli* from Spinach and Radish grown soils amended with urea (UR), composted (PLC) or pelletized poultry litter (PLP)

<u>Commodity</u>	<u>Day Post</u> <u>Inoculation</u>	<u>Biological Soil</u> <u>Amendment</u>	<u>Mean E. coli MPN/g</u> or presence in 30 g sample enrichment (E)
<u>Spinach</u>	42	PLC, PLP, UR	30 g , 4/4 E Negative
	123	PLC	4.5 MPN 1/4 E
	123	PLP	7.0 MPN; 2/4 E
	123	UR	0.6 MPN; 1/4 E
Radish Bulb	56	PLC	44.4 MPN
	56	PLP	4207 MPN
	56	UR	1.88 MPN
	92	PLC, PLP, UR	All E negative
	124	PLC	4/4 E positive
	124	PLP	3/3 E positive

Concentrations of Water Soluble Carbon (C) and Nitrogen (N) in Amended Soils

Amendment	µg soluble C per g soil	μg soluble N per g soil
	(mean ± sd)	(mean ± sd)
UR	30.63 ± 0.7	40.53 ± 0.53
PLC	60.13 ± 2.0	20.73 ± 0.13
PLP	100.5 ± 5.8	30.40 ± 1.54

Concentrations of Water Soluble Carbon (C) and Nitrogen (N) in Soil Amendments			
Amendment	μg soluble C per g soil (mean ± sd)	μg soluble N per g soil (mean ± sd)	
DMC	288 ± 96	3·47 ± 3·4	
PLC	284 ± 106	3.90 ± 3.3	
PLP	2449 ± 989	5.23± 3.6	
VC	244 ± 98	11.0 ± 5.1	

Microbial Standards for Treatment Processes FDA (§§ 112.54 and 112.55)

- Scientifically valid controlled processes:
 - physical (thermal),
 - chemical (high alkaline pH), or combinations,
 - composting

demonstrated to satisfy microbial standards:

Listeria monocytogenes	Undetected using a method that can detect 1 CFU/5 grams analytical portion
Salmonella species	Less than 3 MPN/4 grams of total solids (dry weight)
<i>E. coli</i> O157:H7	Less than 0.3 MPN/gram analytical portion
Fecal coliforms	Less than 1,000 MPN/gram (dry weight)

What is Composting?

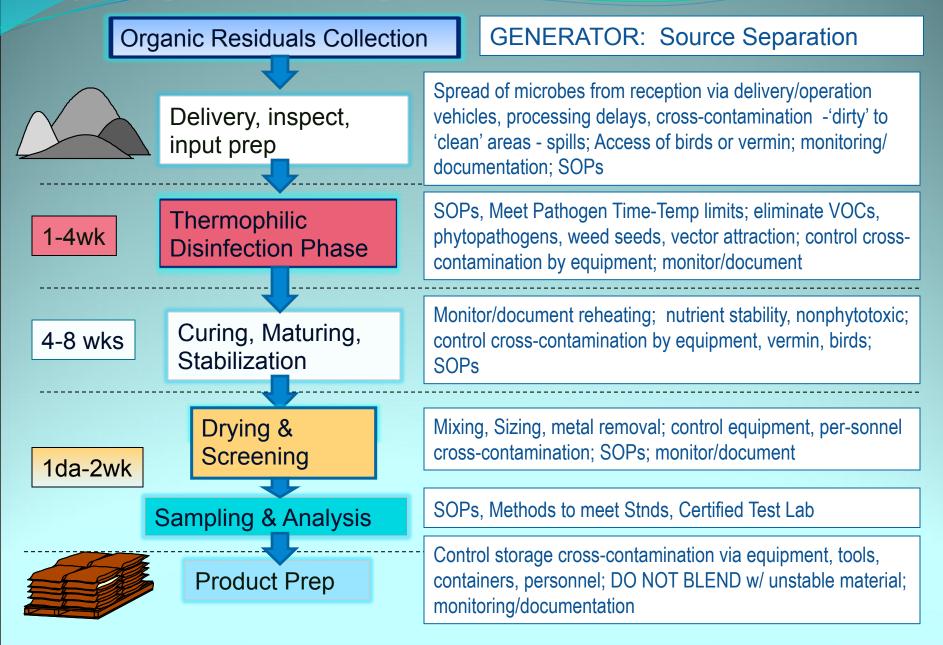
- Composting is a <u>managed</u>, aerobic (oxygenrequiring) process in which natural biological decomposition of organic residuals results in the production of a stabilized, humic, organic soil amendment.
 - <u>Proper Composting</u>
 - Stabilizes nutrients
 - Reduces plant and animal pathogen concentrations
 - •Reduces vector attraction and production of odors

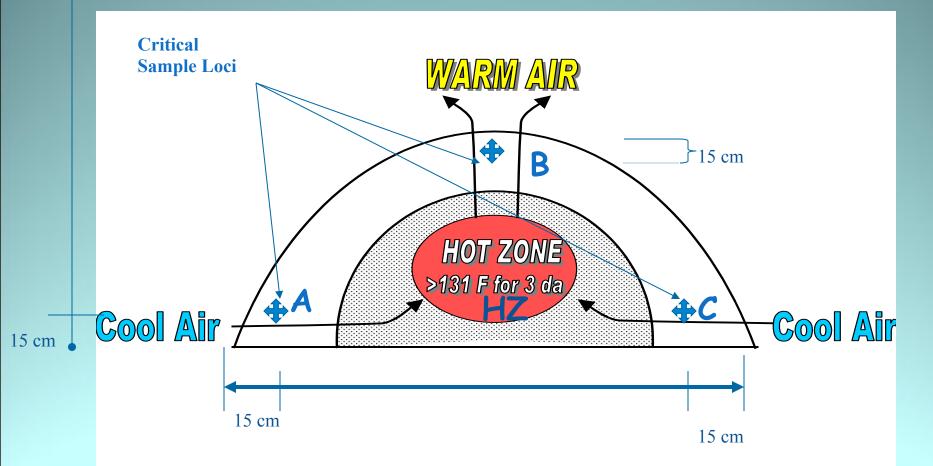
FDA: two types of valid aerobic composting processes

1) Static composting: aerobic (i.e., oxygenated)

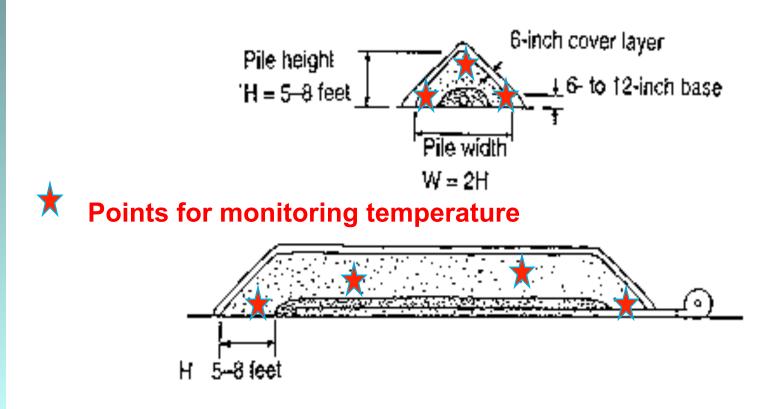
- minimum 131°F (55°C) for 3 days
- adequate curing
- proper insulation

1)Turned composting: aerobic conditions

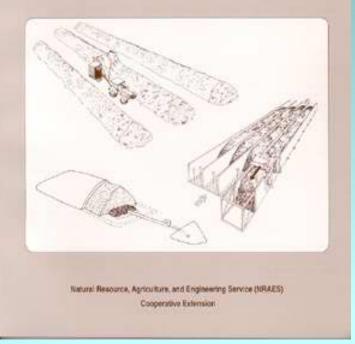

- minimum 131°F (55°C) for 15 days
- at least 5 turnings
- curing
- proper insulation


<u>Compost Process Criteria</u>: maintain optimal conditions for microbial degradation

- C:N 25:1 30:1
- Moisture Content: 40-60%,
- Structural Porosity: 35 50% free air space for O₂ transfer
- Optimize recipe for type of feedstock
- Material handling efficiency- 2x limit


Composting Process Stages & HACCP Critical Control Points

Compost Windrow Temperature Gradient (Cross-Section) and Recommended Sample Points at the Toe Ends


Critical Sampling Loci (A & C) relative to the "Hot Zone" (HZ) and Positive Checkpoint (B)

Aerated static pile layout and dimensions.

On-Farm Composting Handbook

* NRAES-54

*Item #1165

*Item #1168

*http://extensionpubs.umext.maine.edu/ePOS/form=item.html&item=1157&store=413 **http://www.sanjuanislandscd.org/Information/Composting/assets/Small_Farm_Composting.pdf Cornell Waste Management Institute: http://cwmi.css.cornell.edu/

Small Farm Composting Guide**

Planning and Dasign Considerations

Sampling-When, Where, Who, How

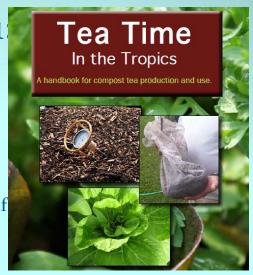
US Composting Council-TMECC

•http://compostingcouncil.org/tmecc/

• Seal of Testing Assurance – STA

•http://compostingcouncil.org/seal-of-testing-assurance/

USDA-ARS with support from the Center for Produce Safety conducted a validation study of microbial test procedures for compost Test Methods for the Examination of


Composting and Compost

<u>Reduce Cross-Contamination</u>: Tools, probes, containers; double bag; ship in insulated containers; use frozen gel-paks

Compost Tea and Leachate

- Leachates and teas as foliar fertilizer/soil amendments
 - Leachate: liquid from compost piles.
 - Compost tea (aerated and non-aerated): intentionally water-steeped compost
- Aerated: manure/compost:water (1:10-50); aerated by injection or re-circulating water 12-24 hrs
- Non-aerated: manure/compost:water (1) stationary , 1–3 wks

https://www.sare.org/content/download/66749/944806/Compost_Tea_Manual.pdf

Contamination Risk from Foodborne Illness Pathogens

- Use **<u>potable water</u>** when mixing compost teas: No *E.coli*
- Use <u>properly composted manure</u>: no wait time; should only apply to soil, not the edible portion of the crop
- Raw manure tea: can only apply to soil; not directly on plants; has a **one-year harvest wait time interval**
- <u>Additives</u> (molasses, yeast, etc.) must follow the same one-year harvest wait time interval
- <u>Compost leachate</u>: applied to soil with the 90/120 day rule; NOT for direct application to plants
- <u>Teas may NOT be applied to edible seed sprouts</u>

Soil Amendments: Summary

- ♦ Key Factors
 - Compliance with FSMA & NOP
 - Farming operations are local, site specific
 - Soil amendments are unique and varied
 - Poultry litter/manure: prolongs E. coli persistence
 - + Environment, Employees, Equipment
 - Materials Handling & Management
 - Training, Operations, Maintenance

BEST PRACTICES (Cont'd)

- Plan site layout with slope and water movement in mind
- Keep the site clean
- Manage leachate and runoff appropriately
- Actively manage dust
- Use clean water
- Manage vehicles and equipment
- Actively manage stockpiles
- Segregate tools and containers
- Control access by pathogen vectors
- Inform personnel on methods to avoid contamination and to protect their own health – Training!
- <u>Test to verify</u> that facility management is resulting in clean products - USCC STA (Seal of Testing Assurance)

σιαγ сиггепτ

Acknowledgements

USDA-ARS

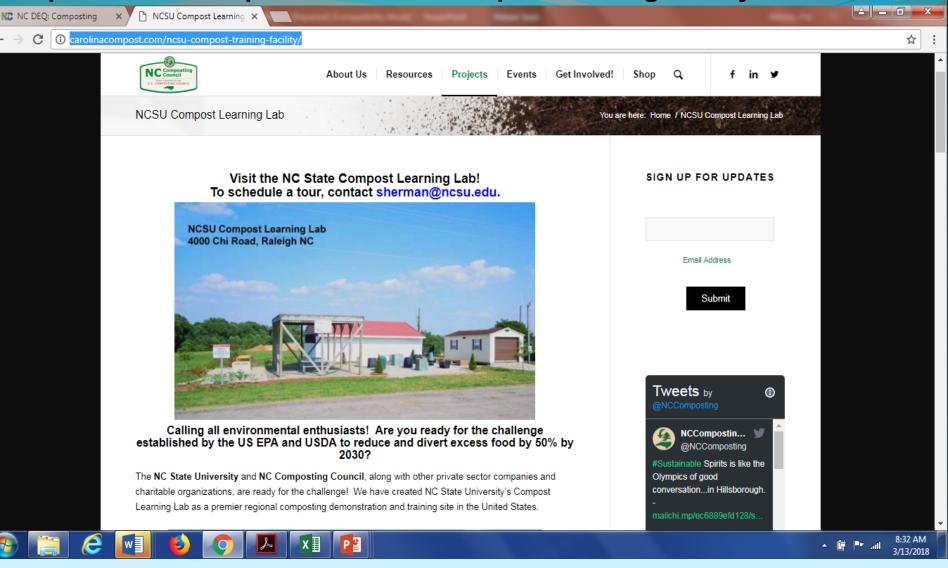
- Manan Sharma
- Cheryl East
- Eric Handy
- •Kathryn White
- Cary Coppock

FDA-CFSAN Division of Produce Safety

- Michael Mahovic
- •David Ingram
- Scarlett Salem
- •Annmarie Buchholz

University of Maryland Eastern Shore:

- Dr. Fawzy HashemRussell Reynnells
- •H. David Clark
- •Ms. Corrie Cotton
- •Lorna Graham
- •Celia Whyte
- Brett Smith
- Natalia Macarisin
- Daniel Wright
- •Nicci (Jamie) Coffee
- Richard Stonebraker
- •June DeGraft Hansen


SEAREC (Penn State):

•Dr. Alyssa Collins / Staff

REGULATORY COMPLIANCE ISSUES-Local

- Local Zoning and State Permits (as needed)
 - Erosion and Sediment Control
- Surface Water Contamination <u>Runoff</u>
- Ground Water Contamination Infiltration
- Nitrate & Phosphate in Agricultural Soil

http://carolinacompost.com/ncsu-compost-training-facility/

Urban farms and community gardens may compost without a permit as long as they do not offer the finished compost to the public and stay within certain volume limits if material is brought in from off site.

Composting Guidance for Urban Farms and Community Gardens

<section-header><section-header><section-header><text>

CRC Press 2001 ISBN: 978-1-56670-460-1

COMPOST vs. OTHER MEDIA				
	Compost	Manure	Peat	Topsoil
Nutrients	M-H	Н	vL	L-M
Sol salts	M-H	M-H	vL	L
pН	М	M-H	L-vL	L-M
WHC	М	L-M	H-vH	L
ОМ	M-H	M-H	H-vH	L

Thickness	Cu. yd/1,000 ft.	Cu. yd/Acre
1/2 inch	1.5	67
1 inch	3	134
2 inches	6	269
3 inches	9	402

Field Guide to Compost Use. 1996. U.S. Composting Council. www.*compostingcouncil.org/compost-use-instructions/*

Compost Troubleshooting

Low pile temperature

- Pile too small, cold weather, too dry, poor aeration, or lacks nitrogen
- Make pile bigger or insulate sides, add water, turn the pile, add greens or manure

High pile temperature

- Pile too large, insufficient ventilation
- Reduce pile size, turn

Suitability of Compost as a Potting Media for Production of Organic Vegetable Transplants

Sean Clark & Michel Cavigelli 2005 <u>Compost Science and Utilization</u> 13: 150-156.

Study of comparison of food waste compost (included landscape trimmings) vs. horse bedding compost. 100% and 50:50 blend with bark, peat, sand

Food waste compost produced plants comparable to those in standard commercial peat-based potting mix.

Horse bedding compost was unacceptable at both rates for transplant production (likely high salts and N immobilization)

Carcass compost: suitability for fresh produce ?